Stacked Surface Enhanced Raman Scattering ( SERS ) Substrates with pico - Molar Sensitivity : Experimental and Simulation Studies
نویسندگان
چکیده
We have demonstrated a surface-enhanced Raman scattering (SERS) substrate capable of detecting 1 pM of benzenethiol (BT) and developed better understanding of its enhancing mechanism by varying the fabrication process and also performing detailed simulation studies. The extreme enhancement originates from the three dimensionally fabricated and optimized substrate, which is made of Au-nanoparticle (NP) clusters stacked using vertically standing ZnO nanowires (ZnO-NW) as skeletal frames that completely dissolve away during the synthesis procedure and leave vertical light passages among clusters, allowing light to reach deeper into the stacks for higher sensitivity.
منابع مشابه
Detection of Molecular Vibrations of Ciprofloxacin Using Flexible Plasmonic Active Substrates as Surface-Enhanced Raman Scattering (SERS) Biosensors
This article has no abstract.
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملMolecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)
In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...
متن کاملUnraveling near-field and far-field relationships for 3D SERS substrates--a combined experimental and theoretical analysis.
Simplicity and low cost has positioned inkjet paper- and fabric-based 3D substrates as two of the most commonly used surface-enhanced Raman spectroscopy (SERS) platforms for the detection and the identification of chemical and biological analytes down to the nanogram and femtogram levels. The relationship between far-field and near-field properties of these 3D SERS platforms remains poorly unde...
متن کاملMonotonic Tuning of Plasmon Resonance Using Deformable Nanoplasmonic Membrane for Surface-enhanced Raman Scattering
Localized surface plasmon resonance (LSPR) is strongly associated with inelastic scattering of biochemical molecules near metal nanostructures, i.e., surface enhanced Raman scattering (SERS). Systematically exploration of the relationship between surface-enhanced Raman spectroscopy (SERS) and the plasmon resonance wavelength has been an experimental limitation due to the lack of reliable and tu...
متن کامل